0,8591y + 0,2324z = 1,8230. De même N(7)-C(8)-S(9) et N(13) appartiennent à un plan moyen d'équation: 0,4903x + 0,1565y - 0,8574z = 0,8570. L'angle formé par ces deux plans est égal à $80,86^{\circ}$. Les angles dièdres correspondants ont les valeurs suivantes:

C(2)-C(1)-N(7)-C(8)	99 (2)°
C(6)-C(1)-N(7)-C(8)	-82 (2)
C(1)-N(7)-C(8)-S(9)	0(1)
C(1)-N(7)-C(8)-N(13)	180 (2).

L'hétérocycle a la conformation définie par cinq atomes coplanaires: C(8)-S(9)-C(10)-C(12) et N(13), l'atome C(11) étant situé en dessous du plan. Les angles dièdres relatifs à cet hétérocycle sont rassemblés ci-dessous:

C(8)-S(9)-C(10)-C(11)	-28 (1)°
S(9)-C(10)-C(11)-C(12)	61(1)
C(10)-C(11)-C(12)-N(13)	-62(2)
C(11)-C(12)-N(13)-C(8)	30 (2)
C(12)-N(13)-C(8)-S(9)	1 (1)
N(13)-C(8)-S(9)-C(10)	-2(1)

Un réseau de liaison hydrogène et de contacts de van der Waals est responsable de la cohésion cristalline (Tableau 4). Ce tableau appelle la remarque suivante: O(15) transfère son proton sur N(7) qui prend alors une charge positive; ce résultat s'observe également dans la structure du chlorhydrate de clonidine (Byre *et al.*, 1976). Par contre N(13) reste sp^2 , son hydrogène H(130) étant engagé dans la liaison O(16ⁱ)-N(13^{iv}) alors qu'on aurait pu s'attendre à ce qu'il devienne basique.

Références

- Byre, G., Mostad, A. & Rømming, C. (1976). Acia Chem. Scand. Ser. B, **30**, 843–846.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.
- ROUOT, B., LECLERC, G. & WERMUTH, C. G. (1973). Chim. Thér. 5, 545-551.
- WERMUTH, C. G., SCHWARTZ, J., LECLERC, G., GARNIER, J. P. & ROUOT, B. (1973). *Chim. Thér.* 1, 115–116.

Acta Cryst. (1979). B35, 996-998

Structure de la N-Morpholinométhyl-2 5 H-Dibenzo[b, f]azépine

PAR A. CARPY, M. GADRET,* M. GOURSOLLE ET J. M. LEGER

Laboratoire de Chimie Analytique, Faculté de Pharmacie, ERA nº 626, CNRS, Université de Bordeaux II, 91 rue Leyteire, 33000 Bordeaux, France

et J. Lehuede

Laboratoire de Chimie, UER de Médecine et Pharmacie, 34 rue du Jardin des Plantes, 86000 Poitiers, France

(Reçu le 11 juillet 1978, accepté le 18 janvier 1979)

Abstract. C₁₉H₂₀N₂O, orthorhombic, space group $Pna2_1$, Z = 4, a = 18.075 (2), b = 14.254 (3), c = 6.199 (1) Å, $D_x = 1.216$ Mg m⁻³, V = 1597 Å³. The structure was solved by direct methods from three-dimensional X-ray data and refined by least-squares calculations to R = 0.045 for 750 structure amplitudes. Van der Waals contacts are responsible for crystalline cohesion.

Introduction. Au cours de l'étude de modulations dans la série des antidépresseurs, l'introduction de groupements aminométhyles sur des molécules bicycliques (Gadret, Goursolle, Leger & Lehuede, 1977) ou tricycliques (présent travail) peut *a priori* s'effectuer sur différents sites. L'étude en IR et en ¹H RMN ne permet

0567-7408/79/040996-03\$01.00

pas d'établir avec certitude l'emplacement du substituant aminométhyle. N'ayant pas trouvé dans la littérature d'établissement de structures cristallines en série iminostilbène (5H-dibenzo[b, f]azépine), étant donné d'autre part l'intérêt thérapeutique présenté par ces dérivés aussi bien comme neuroleptiques (Opipramol) qu'antiépileptiques et analgésiques (Carbamazépine), il a donc semblé utile de déterminer leurs structures tridimensionnelles par diffraction X.

La N-morpholinométhyl-2 5 H-dibenzo[b, f]azépine cristallise sous forme de petits prismes parallélépipédiques de couleur jaune orangée, par évaporation lente à partir d'une solution éthanolique saturée. Les diagrammes de Bragg et de Weissenberg ont permis de déterminer le groupe de symétrie et les valeurs approchées des paramètres cristallins; celles-ci ont été précisées lors de l'étude sur diffractomètre automatique Nonius CAD-4.

© 1979 International Union of Crystallography

^{*} Auteur auquel toute correspondance devra être adressée.

Les intensités de 1289 réflexions indépendantes ont été corrigées par le facteur de Lorentz-polarisation (750 réflexions observées); aucune correction d'absorption n'a été effectuée. Les méthodes directes utilisant le programme MULTAN (Germain, Main & Woolfson, 1970), suivies de séries de Fourier, laissaient apparaître la molécule entière à l'exception des atomes d'hydrogène. Un premier calcul de F_c avec tous les atomes non-hydrogènes conduisait à un facteur R =0,29.

L'affinement de la structure par la méthode des moindres carrés a été conduit de la façon suivante:

- affinement avec agitation thermique isotrope sur les atomes O, N, C: R = 0.121,

- affinement avec agitation thermique anisotrope sur ces mêmes atomes: R = 0.076,

-localisation des atomes d'hydrogène par fonction différence de Cochran,

- affinement avec agitation thermique anisotrope sur les atomes O, N, C et isotrope sur les atomes H: R =0.045.*

La molécule est représentée sur la Fig. 1.

Discussion. Les coordonnées réduites des atomes accompagnées de leurs écarts-type sont données dans le Tableau 1; les distances et les angles interatomiques sont regroupés dans les Tableaux 2 et 3 respectivement.

La Fig. 2, représente la projection de la structure sur le plan (001).

Les atomes $C(1 \rightarrow 4)$ et $C(13 \rightarrow 15)$ sont contenus dans un plan d'équation 0.8236x + 0.3442y - 0.4507z= 9,0249. De même, les atomes $C(5 \rightarrow 11)$ sont contenus dans un plan d'équation 0,8463x - 0,2764y-0.4554z = 5.1305. L'angle formé par ces deux plans est égal à $\alpha = 36,18^{\circ}$. Comme on pouvait s'y attendre, le squelette dibenzoazépine est 'plié', l'angle α représentant l'angle de flexion. La distance entre les centres géométriques des cycles latéraux $\delta = 5,07$ Å, l'angle d'annélation [angle formé par les droites passant par

* Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 34161: 11 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Numérotation atomique.

C(6)-C(11) et C(3)-C(13)] $\beta = 28^{\circ}$, quant à l'angle de torsion (angle compris entre la ligne d'intersection des deux plans contenant les cycles latéraux et le plan de symétrie) $\gamma \simeq 0^{\circ}$ ce qui montre que le noyau condensé est sensiblement symétrique. Ces paramètres stériques précisant la configuration spatiale du noyau condensé ont la dénomination proposée par Wilhelm & Kuhn (1970).

Les angles dièdres relatifs à la position de N(12) ont les valeurs suivantes:

> $C(9)-C(10)-C(11)-N(12) = 182 (6)^{\circ}$ C(10)-C(11)-N(12)-C(13) = 229(5)C(11)-N(12)-C(13)-C(14) = 127(5)N(12)-C(13)-C(14)-C(15) = 172 (6).

Tableau 1. Paramètres atomiques

Les coordonnées des atomes O, N, C ont été multipliées par 104, celles des atomes H par 103.

	x	У	Ζ	B_i (Å ²)
C(1)	3343 (3)	7294 (4)	-1684 (12)	
C(2)	3311 (3)	6570 (4)	-3160 (13)	
C(3)	3659 (3)	5707 (4)	-2823 (11)	
C(4)	3571 (3)	4971 (5)	-4463 (14)	
C(5)	3630 (3)	4037 (4)	-4213 (14)	
C(6)	3814 (3)	3491 (4)	-2315 (12)	
C(7)	3584 (3)	2549 (5)	-2290 (13)	
C(8)	3764 (4)	1992 (4)	-590 (15)	
C(9)	4167 (3)	2321 (4)	1189 (14)	
C(10)	4415 (3)	3263 (4)	1116 (12)	
C(11)	4222 (3)	3834 (4)	-583 (13)	
N(12)	4521 (3)	4771 (3)	-558 (11)	
C(13)	4073 (3)	5575 (4)	-888 (12)	
C(14)	4099 (4)	6305 (4)	656 (13)	
C(15)	3733 (4)	7155 (4)	201 (13)	
C(16)	2968 (3)	8217 (5)	-2247 (14)	
N(17)	3351 (3)	8734 (3)	-3946 (11)	
C(18)	4090 (3)	9014 (4)	-3280 (15)	
C(19)	4456 (4)	9521 (5)	-5131 (16)	
O(20)	4041 (3)	10332 (3)	-5718 (12)	
C(21)	3308 (4)	10089 (5)	-6279 (17)	
C(22)	2933 (3)	9579 (4)	-4551 (16)	
H(200)	302 (3)	667 (3)	-461 (10)	5,7
H(40)	344 (3)	525 (4)	-595 (12)	6,8
H(50)	352 (3)	367 (3)	-558 (10)	6,6
H(70)	326 (3)	229 (3)	-364 (10)	6,1
H(80)	361 (3)	131 (3)	-59 (10)	7,2
H(90)	428 (3)	193 (4)	254 (10)	6,9
H(100)	474 (3)	352 (3)	233 (10)	6,8
H(120)	506 (4)	489 (5)	-21 (11)	9,9
H(140)	439 (3)	620 (3)	215 (11)	6,6
H(150)	376 (3)	767 (3)	126 (10)	6,4
H(160)	244 (3)	808 (3)	-275 (10)	6,5
H(161)	294 (3)	864 (3)	-94 (10)	5,7
H(180)	404 (3)	948 (3)	-196 (11)	6,8
H(181)	439 (3)	842 (3)	-285 (11)	6,4
H(190)	497 (4)	972 (4)	-471 (12)	8,2
H(191)	449 (3)	908 (3)	-648 (9)	4,9
H(210)	302 (3)	1069 (3)	-658 (9)	6,3
H(211)	333 (3)	966 (4)	-755 (12)	7,8
H(220)	285 (3)	1003 (4)	-320 (11)	7,5
H(221)	244 (3)	937 (4)	-508 (9)	6,0

Tableau 2. Distances interatomiques (Å)

C(1) - C(2)	1,381 (9)	N(12)-H(120)	1,01 (7)
C(1) - C(15)	1,38 (9)	C(13) - C(14)	1,414 (9)
C(1) - C(16)	1,52 (1)	C(14) - C(15)	1,41 (1)
C(2) - C(3)	1,396 (9)	C(14) - H(140)	1,07 (6)
C(2) - H(200)	1.06 (5)	C(15) - H(150)	0,98 (5)
C(3) - C(4)	1.47 (1)	C(16) - N(17)	1,460 (9)
C(3) - C(13)	1,426 (9)	C(16)–H(160)	1.03 (5)
C(4) - C(5)	1.34 (1)	C(16) - H(161)	1.01 (5)
C(4) - H(40)	1.03 (6)	N(17) - C(18)	1,453 (9)
C(5) - C(6)	1.449 (9)	N(17) - C(22)	1.471 (9)
C(5) - H(50)	1,02 (5)	C(18) - C(19)	1,51 (1)
C(6) - C(7)	1,41 (1)	C(18) - H(180)	1,06 (6)
C(6) - C(11)	1,391 (9)	C(18) - H(181)	1,04 (6)
C(7) - C(8)	1,36 (1)	C(19) - O(20)	1,43 (1)
C(7) - H(70)	1,09 (5)	C(19)-H(190)	1,00 (6)
C(8) - C(9)	1,40 (1)	C(19) - H(191)	1,04 (5)
C(8)-H(80)	1,01 (5)	O(20) - C(21)	1,41 (1)
C(9) - C(10)	1,416 (9)	C(21) - C(22)	1,46 (1)
C(9)-H(90)	1,03 (6)	C(21) - H(210)	1,02 (5)
C(10) - C(11)	1,376 (9)	C(21) - H(211)	1,00 (6)
C(10) - H(100)	1,02 (5)	C(22) - H(220)	1,07 (6)
C(11) - N(12)	1,442 (8)	C(22) - H(221)	1,00 (5)
N(12) - C(13)	1,418 (8)	, /	,

Tableau 3. Angles interatomiques (°)

C(1) $C(1)$ $C(15)$	110 2 (6)	C(13) = C(14) = H(140)	120(2)
C(2) = C(1) = C(15)	118,5 (0)	C(15) = C(14) = H(140)	120(3) 121(3)
C(15) = C(1) = C(10)	123 2 (6)	C(1) = C(15) = C(14)	121(3) 122 2 (6)
C(1) = C(1) = C(10)	123,2(0)	C(1) = C(15) = U(150)	110(3)
C(1) = C(2) = C(3)	122,7(0)	$C(14) = C(15) = \Pi(150)$	110 (3)
C(3) = C(2) = H(200)	119(3)	$C(14) = C(15) = \Pi(150)$	113 0 (6)
C(3) = C(3) = C(4)	118 (3)	C(1) = C(16) = H(160)	100 (3)
C(2) = C(3) = C(4)	118,5 (6)	C(1) = C(16) = H(160)	107(3)
C(4) = C(3) = C(13)	173.0 (6)	N(17) = C(16) = H(160)	100(3)
C(3) = C(4) = C(5)	128,0 (0)	N(17) = C(16) = H(161)	107(3)
C(3) = C(4) = H(40)	120,2(0)	H(160) = C(16) = H(161)	107(3) 108(4)
C(5) = C(4) = H(40)	120(3)	C(16) = N(17) = C(18)	100(4)
C(4) = C(5) = C(6)	130 0 (6)	C(16) = N(17) = C(10)	1107(5)
C(4) = C(5) = H(50)	114(3)	C(18) = N(17) = C(22)	108.6 (5)
C(6) = C(5) = H(50)	114(3)	N(17) = C(18) = C(19)	108.6 (6)
C(5) - C(6) - C(7)	1170(5)	N(17) = C(18) = H(180)	108(3)
C(5) = C(6) = C(11)	1741(6)	N(17) - C(18) - H(181)	100(3)
C(7) = C(6) = C(11)	1189(6)	C(19) = C(18) = H(180)	109 (3)
C(6) = C(7) = C(8)	110, 7(0)	C(19) = C(18) = H(181)	107(3)
C(6) = C(7) = H(70)	119(3)	H(180) = C(18) = H(181)	111(3)
C(8) - C(7) - H(70)	122(3)	C(18) = C(19) = O(20)	1105(6)
C(7) = C(8) = C(9)	122(3) 1226(7)	C(18) - C(19) - H(190)	110(4)
C(7) = C(8) = H(80)	120(3)	C(18) - C(19) - H(191)	110(3)
C(9) = C(8) = H(80)	118(3)	O(20) = C(19) = H(190)	109 (4)
C(8) - C(9) - C(10)	117.2 (6)	O(20) = C(19) = H(191)	108(3)
C(8) - C(9) - H(90)	124 (3)	H(190) = C(19) = H(191)	109 (5)
C(10) = C(9) = H(90)	119(3)	C(19) = O(20) = C(21)	1110(6)
C(9) = C(10) = C(11)	120.3 (6)	O(20) = C(21) - C(22)	112 1 (7)
C(9) - C(10) - H(100)	120 (3)	O(20) - C(21) - H(210)	108 (3)
C(11) - C(10) - H(100)	120(3)	O(20) - C(21) - H(211)	108(4)
C(6) = C(11) = C(10)	121.2 (6)	C(22) = C(21) = H(210)	109 (3)
C(6)-C(11)-N(12)	122.2 (6)	C(22) - C(21) - H(211)	107(4)
C(10) - C(11) - N(12)	116.4 (6)	H(210) = C(21) = H(211)	113 (5)
C(11) = N(12) = C(13)	122.2 (5)	N(17) = C(22) = C(21)	110.9 (6)
C(11) - N(12) - H(120)	121 (4)	N(17) = C(22) = H(220)	111(3)
C(13) - N(12) - H(120)	116 (4)	N(17) - C(22) - H(221)	108 (3)
C(3)-C(13)-N(12)	121.9 (6)	C(21) - C(22) - H(220)	110 (3)
C(3) - C(13) - C(14)	119.3 (6)	C(21) - C(22) - H(221)	109 (3)
N(12)-C(13)-C(14)	118.5 (6)	H(220)-C(22)-H(221)	108 (4)
C(13) - C(14) - C(15)	118.8 (6)	(,(,(,	

La position du reste morpholinométhyl est caractérisée par les angles dièdres:

$$C(2)-C(1)-C(16)-N(17) = -70 (6)^{\circ}$$

$$C(15)-C(1)-C(16)-N(17) = 107 (6)$$

Tableau 4. Principaux contacts de van der Waals $(\lesssim 3, 6 \text{ Å})$

Code de symétrie

(i) x, y, z; (ii) x, y, 1 + z; (iii) x, -1 + y, 1 + z; (iv) $1 - x, 1 - y, \frac{1}{2} + z;$ (v) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z.$

$C(10^{i}) - C(5^{ii})$	3,408 (9)		
$C(9^{i}) - O(20^{iii})$	3,430 (9)	H(90 ⁱ)–O(20 ⁱⁱⁱ)	2,55 (6)
$N(12^{i})-C(4^{iv})$	3,534 (9)	$H(120^{i})-C(4^{iv})$	2,53 (7)
$C(16^{i})-C(5^{v})$	3,64 (1)		

Fig. 2. Projection de la structure sur le plan (001).

C(1)-C(16)-N(17)-C(18) = -63 (5) C(1)-C(16)-N(17)-C(22) = 175 (5).

Le cycle morpholinique a une forme chaise: C(18) et C(21) étant situés respectivement au-dessus et audessous du plan formé par N(17), C(22), C(19) et O(20). Les angles dièdres relatifs au cycle morpholinique sont compris entre 56° et 60° :

N(17)-C(18)-C(19)-O(20) =	60 (6)°
C(18)-C(19)-O(20)-C(21) =	-58 (6)
C(19)-O(20)-C(21)-C(22) =	56 (6)
O(20)-C(21)-C(22)-N(17) =	-57 (6)
C(21)-C(22)-N(17)-C(18) =	58 (5)
C(22)-N(17)-C(18)-C(19) =	-59 (6).

Le cristal est constitué de couches moléculaires sensiblement parallèles à la rangée [010] (Fig. 2). La cohésion cristalline est assurée par un réseau de contacts de van der Waals (Tableau 4).

Références

- GADRET, M., GOURSOLLE, M., LEGER, J. M. & LEHUEDE, J. (1977). Acta Cryst. B33, 2232–2236.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.
- WILHELM, M. & KUHN, R. (1970). Pharmakopsychiatr./ Neuro-Psychopharmakol. 3, 317–330.